Wiskundemeisjes

Ionica & Jeanine
 
Slik Internetbureau Rotterdam Internetbureau Rotterdam



  • Laatste Reacties

Categorieën

Archief

Coster-getallen


In Nieuws,Puzzels, door wiskundemeisjes

In september schreven we al een stukje over de leuke rekenprijsvraag van Pythagoras over Coster-getallen. Een Coster-getal is een geheel getal dat je met +, -, x en : kunt maken uit zijn eigen cijfers, waarbij elk cijfer precies twee keer wordt gebruikt. In de meer dan vijftig reacties op dat stukje zijn jullie als een dolle aan de slag gegaan om grote Coster-getallen te zoeken en algemene formules te bewijzen. Matthijs Coster (die de Coster-getallen verzon) stuurde ons een overzicht van de stand van zaken. De volgende tekst is van hem afkomstig. We hopen dat in de reacties op dit stukje weer de nodige vragen beantwoord zullen worden!

De speurtocht naar Coster-getallen heeft velen in de greep. Niet alleen scholieren zijn op zoek naar Coster-getallen onder de 200, maar er wordt ook naarstig gezocht naar grotere Coster-getallen. Op 16 januari, daags na de sluitingstermijn van de prijsvraag zal de redactie van het wiskundetijdschrift Pythagoras een lijst van Coster-getallen bekendmaken.

Tot op heden ontving de redactie al diverse inzendingen. De meest gangbare methode was het berekenen van N=2a 3b, waarbij a en b forse getallen zijn. Zo laat Tim op Wiskundemeisjes zien dat 2764 3382 een Coster-getal is. Inmiddels is echter bekend dat het grootste Coster-getal nooit gevonden zal worden, want er zijn oneindig veel Coster-getallen. Neem de rij 45, 4545, 454545, 45454545, .... In hun reacties op de Wiskundemeisjes laten Albert Hendriks en Arjen Stolk zien dat vanaf lengte 32 al deze getallen Coster-getallen zijn. Eerder stuurde David Kloet de rij 55555555, 5555555555555555, ... in, die ook allen Coster-getallen zijn.

Daarmee is een deel van de prijsvraag tot een goed einde gebracht. Maar desondanks kan iedereen nog inzenden en meedingen naar de schoonheidsprijs. Na de sluitingstermijn gaat de jury bekijken wie de meest originele inzending had. Hierbij nog vier interessante problemen om nog over na te denken.
Probleem 1: Probeer het kleinste Coster-getal te vinden groter dan 10n, voor n = 5,6,....
Probleem 2: De bewijzen dat er oneindig veel Coster-getallen bestaan die tot nog toe bij de redactie, zijn gebaseerd op de constructie van een oneindige reeks van Coster-getallen, zoals 55555555, 5555555555555555, ... en 45,4545,454545,45454545,.... Aan een dergelijke reeks gaan we een waarde toekennen, namelijk het aangepaste meetkundige gemiddelde. We nemen het product van de cijfers, als deze cijfers groter of gelijk aan 3 zijn. Elke combinatie van 1 en 2 laten we samen meetellen als een 3. De resterende tweeën tellen als 2. De resterende enen tellen mee als de derdemachtswortel uit 3. De motivatie is dat je probeert om zo groot mogelijke getallen te maken door toepassen van de gebruikelijke bewerkingen. Kleine getallen moet je zoveel mogelijk samenvoegen tot factoren 3. De vraag is nu om voor een reeks van Coster-getallen dit aangepaste meetkundig gemiddelde (zeg maar Coster-waarde) te minimaliseren.
Probleem 3: Onderzoek de binaire Coster-getallen. Tot nog toe vond ik 1,2,3,7,15 en 63. Zijn er meer?
Probleem 4: Nu gaan we kijken naar Coster-getallen in het 3-tallig stelsel. Zijn er oneindig veel Coster-3-getallen? Wat is de kleinst mogelijke Coster-3-waarde?

(Ionica)

ps Deze tekst is een sterk ingekorte versie (met wat minder mooie wiskundige formules), wie de hele tekst van Matthijs Coster wil lezen kan deze pdf-file downloaden. In deze file gaat hij ook dieper in op de gebruikte methodes en zijn ideeën over probleem 3.