Dit bericht is geplaatst op woensdag 20 september 2006 om 17:40 in categorieën Algemeen. Je kunt de reacties volgen via een RSS 2.0 feed. Je kunt een reactie plaatsen, of een trackback van je eigen site plaatsen.
Wiskundemeisjes
Ionica & Jeanine
Rekenprijsvraag!
In Algemeen, door wiskundemeisjes
Het tijdschrift Pythagoras viel vandaag bij mij in de bus en daar staat zo'n leuke rekenprijsvraag in! De vraag draait om zogenaamde Coster-getallen die Matthijs Coster speciaal voor deze prijsvraag bedacht.
Een Coster-getal is een geheel getal dat je met +, -, x en : kunt maken uit zijn eigen cijfers, waarbij elk cijfer precies twee keer wordt gebruikt. In de berekening mag je de rekenvolgorde zelf bepalen, je mag dus haakjes zetten zoveel je wilt. 'Cijfers plakken' (bijvoorbeeld van een 1 en een 2 het getal 12 maken) is niet toegestaan.
Voorbeelden van Coster-getallen zijn:
25 = 5 x 5 +2 - 2 en 256 = (2 x 5 + 6) x (2 x 5 + 6).
De opdracht is nu om een zo groot mogelijk Coster-getal te zoeken. De redactie geeft een voorzet met
127750 = 5 x 5 x 7 x (7 x (7 x (7 x 2 +1) -1) +2) + 0 + 0.
De oplossingen moeten pas januari volgend jaar ingeleverd worden, dus er is flink tijd om te puzzelen. Zijn er slimme manieren om Coster-getallen te zoeken? Moet je getallen met veel of juist weinig delers gebruiken of maakt dat niets uit? Is een groot Coster-getal vinden een kwestie van geluk hebben of slim zijn?
Ik heb net even wat dingen geprobeerd op de achterkant van een envelop en ik kwam vrij snel tot
59049 = 9 x 9 x 9 x 9 x (5+4) x (5-4) + 0 + 0.
Wie kan het beter? We beloven plechtig om geen oplossingen van onze lezers in te sturen, dat mogen jullie zelf doen!
(Ionica)