Dit bericht is geplaatst op maandag 22 juni 2009 om 09:06 in categorieën Column. Je kunt de reacties volgen via een RSS 2.0 feed. Je kunt een reactie plaatsen, of een trackback van je eigen site plaatsen.
Wiskundemeisjes
Ionica & Jeanine
Meeste stemmen gelden
In Column, door Ionica
Deze column verscheen in de Volkskrant van 20 juni 2009.
Toen ik het glunderende gezicht van Geert Wilders zag na de Europese Verkiezingen, vroeg ik me voorzichtig af of democratie nu echt het beste systeem is. Het is namelijk helemaal niet zo makkelijk om de voorkeuren van de kiezers goed te combineren.
Vorige week mocht onze wiskundeclub nog stemmen over het jaarlijkse uitje. Iedereen kon kiezen uit optie A, B of C. Optie A was een workshop fractalkoekjes bakken, B een crypto-speurtocht en C een dagje naar het rekenlinialenmuseum. De wiskundeclub bestaat uit drie groepen: 20 wiskundemeisjes, 19 nerds en 16 professoren. Binnen elk groep waren de leden het eens over hun favoriete uitje. Alle meisjes kozen A boven B en B boven C. De nerds wilden het liefste B, daarna C en het minst graag A. De professoren hadden als volgorde C, A, B. Wat was nu het beste uitje?
Een wiskundemeisje stelde voor om domweg de meeste stemmen te laten gelden. Zo won uitje A met 20 stemmen. “Hoho”, protesteerde een van de professoren, “Er zijn 35 mensen die liever optie C dan A hebben, dit lijkt me niet zo eerlijk.” Een nerd opperde om met een puntensysteem te werken: iedereen gaf zijn eerste keus drie punten, de tweede keus twee en de derde keus één punt. Na wat snel rekenwerk concludeerde hij triomfantelijk dat optie B won. Weer begon een professor te mopperen: “Dat kan niet kloppen, zowel de wiskundemeisjes als de professoren hebben liever A dan B.” Uiteindelijk verzon deze professor nóg een ander stemsysteem, waarbij optie C won. En uiteindelijk gingen de wiskundemeisjes en nerds licht morrend mee naar het rekenlinialenmuseum.
Wiskundigen denken al lang na over stemsystemen. In 1948, tijdens de Koude Oorlog, kreeg Kenneth Arrow de opdracht om een systeem te maken dat de individuele voorkeuren in de Sovjet-Unie combineerde. Arrow begon met een aantal redelijk klinkende eisen: er mag bijvoorbeeld geen dictator zijn - er is niet één persoon die de uitkomst bepaalt. En als een kiezer van gedachten verandert en een optie hoger plaatst op zijn voorkeurslijst, dan mag die optie daardoor in de einduitslag niet lager eindigen. En zo waren er meer eisen.
Maar wat Arrow ook probeerde, het lukte hem niet om een systeem te verzinnen dat aan die paar zo vanzelfsprekend lijkende eisen voldeed. Na een paar dagen ploeteren kwam hij op het idee om het omgekeerde te bewijzen: als er minstens twee mensen en minstens drie keuze-opties zijn, dan bestaat er geen stemsysteem dat aan alle basiseisen voldoet. Leuk voor Arrow, hij promoveerde op dit werk en kreeg in 1971 de Nobelprijs voor Economie. Minder leuk voor de rest van de wereld, want hoe moeten we dan stemmen?
Er zijn een boel manieren, met kiesmannen of met rondes. En elke methode heeft zijn eigen nadelen en imperfecties. Het blijft een raar idee dat verschillende stemsystemen andere winnaars opleveren – bij precies dezelfde voorkeuren van kiezers. Voor politici geeft het wel een mooie smoes. Als hun partij zetels verliest dan kunnen ze altijd nog zeggen dat het aan het systeem ligt.